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ABSTRACT
Group Di�e-Hellman protocols for Authenticated Key Ex-
change (AKE) are designed to provide a pool of players with
a shared secret key which may later be used, for example, to
achieve multicast message integrity. Over the years, several
schemes have been o�ered. However, no formal treatment
for this cryptographic problem has ever been suggested. In
this paper, we present a security model for this problem and
use it to precisely de�ne AKE (with \implicit" authentica-
tion) as the fundamental goal, and the entity-authentication
goal as well. We then de�ne in this model the execution of
an authenticated group Di�e-Hellman scheme and prove its
security.

1. INTRODUCTION
Group Di�e-Hellman schemes for Authenticated Key Ex-

change are designed to provide a pool of players communi-
cating over an open network with a shared secret key which
may later be used to achieve some cryptographic goals like
multicast message con�dentiality or multicast data integrity.
Secure virtual conferencing involving up to a hundred par-
ticipants is an example of such a multicast scenario [14]. In
this scenario the group membership is static and known in
advance: at startup the participants would like to engage in
a conversation at the end of which they have established a
session key. For this scenario group Di�e-Hellman schemes
are attractive alternatives to methods that establish a ses-
sion key between every pair of players in the multicast group
or rely on a centralized key distribution center.
Over the years, several papers [2, 3, 13, 18, 20, 21, 27, 31,

32] have attempted to extend the well-known Di�e-Hellman
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key exchange [17] to the multi-party setting. The protocols
meet a variety of performance attributes but only exhibit
an informal analysis showing that they achieve the desired
security goals. Some papers exhibit an ad-hoc analysis for
the security of their schemes and some of these schemes have
later been found to be awed [21, 26]. Other papers only
provide heuristic evidence of security without quantifying it.
The remaining schemes assume authenticated links and thus
do not consider the authentication as part of the protocol
design.
In the paradigm of provable security [19] one identi�es

a concrete cryptographic problem to solve (like the group
Di�e-Hellman key exchange) and de�nes a formal model
for this problem. The model captures the capabilities of the
adversary and the capabilities of the players. Within this
model one de�nes security goals to capture what it means
for a group Di�e-Hellman scheme to be secure. And, for a
particular scheme one exhibits a proof of its security. The se-
curity proof aims to show that the scheme actually achieves
the claimed security goals under computational security as-
sumptions.
The fundamental security goal for a group Di�e-Hellman

scheme to achieve is Authenticated Key Exchange (with
\implicit" authentication) identi�ed as AKE. In AKE, each
player is assured that no other player aside from the arbi-
trary pool of players can learn any information about the ses-
sion key. Another stronger highly desirable goal for a group
Di�e-Hellman scheme to provide is Mutual Authentication
(MA). In MA, each player is assured that its partners (or
pool thereof) actually have possession of the distributed ses-
sion key. Pragmatically, MA takes more rounds; one round
of simultaneous broadcasts.
With these security goals in hand, one can analyze the

security of a particular group Di�e-Hellman scheme and see
how it meets the de�nitions. A security analysis (or proof
of security) for the scheme works via reduction from the
security of the scheme to the underlying \hard" problem. A
reduction is a successful algorithm for the \hard" problem
that uses an adversary of the scheme as a subroutine.
In this paper we assume honest players. Honest players do

not deviate from the protocol and their instances erase any
internal data when terminating. Existing two-party proto-
cols (e.g., SSL and IPsec) make this assumption. We see
the additional security goal of dealing with dishonest play-
ers (like veri�able contributory [2]) as important in some
environments but less important in others [1].
This paper provides major contributions to the solution

of the group Di�e-Hellman key exchange problem. We �rst
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present a formal model to help manage the complexity of
de�nitions and proofs for the authenticated group Di�e-
Hellman key exchange. A model where a process controlled
by a player running on some machine is modeled as an in-
stance of the player, the various types of attacks are modeled
by queries to these instances and the security of the ses-
sion key is modeled through semantic security. Moreover, in
order to be correctly formalized, the intuition behind mu-
tual authentication requires cumbersome de�nitions of ses-
sion IDS and partner IDS which may be skipped at the �rst
reading.
Second, we de�ne in this model the execution of a modi-

�ed known protocol [31], we refer to it as AKE1, and show
that AKE1 can be proven secure under reasonable and well-
de�ned intractability assumptions. Third, we present a generic
transformation for turning an AKE protocol into a protocol
that provides MA and justify its security under reasonable
and well-de�ned intractability assumptions.
The remainder of this paper is organized as follows. The

paper starts with some related work in Section 2 and cryp-
tographic notions in Section 3. The paper continues with a
description of our model of a distributed environment in Sec-
tion 4 and gives the precise security de�nitions that should
be satis�ed by a group Di�e-Hellman scheme in Section 5.
Section 6 presents the protocol AKE1 and justi�es its secu-
rity in the random oracle model. Section 7 turns AKE1 into
a protocol that provides MA and justi�es its security in the
random oracle model.

2. RELATED WORK
Two formal models for secure key exchange have received

the most consideration. The �rst model initiated by Bellare
and Rogaway [6, 8] modeled the two-party and three-party
key distribution. This model was further extended by Blake-
Wilson et al. [10, 11] to model the authenticated Di�e-
Hellman key exchange. In this model, player instances are
modeled as oracles available to the adversary and attacks are
modeled by oracle queries. Recently, Bellare, Pointcheval
and Rogaway [5] re�ned this model to use session IDs as
an approach to de�ne the partnering. They also extended
the model to include forward-secrecy, allow password au-
thentication and deal with dictionary attacks. Our model is
derived from [5].
The second formal model is based on the multi-party sim-

ulatability technique and was initiated by Bellare, Canet-
ti and Krawczyk [4]. In this model Bellare et al. con-
sidered Di�e-Hellman and encryption-based key exchange.
Recently Shoup [30] re�ned this model and showed that the
two models are equivalent for two parties under speci�c con-
ditions. However no such treatment has been provided for
the group setting yet.
The work of Ateniese et al. [2] is of particular interest

since it identi�es the fundamental and additional desirable
security goals of authenticated group Di�e-Hellman key ex-
change. The authors o�er provably secure authenticated
protocols and sketch informal proofs that their protocols
achieve these goals. Unfortunately these protocols have later
been found to be awed [26].
Other related papers are [23, 24]. Although they do not

tackle the exact same problem and do not achieve the same
goal, they still seem relevant enough to mention.

3. BACKGROUND

We use the following cryptographic notions throughout
the paper.

3.1 Concrete Security
In this paper we develop proofs in the framework of con-

crete provable security. We provide an exact analysis of the
security of the schemes rather than asymptotic ones. That
is, we explicitly quantify the reduction from the security of a
scheme to the security of the underlying \hard" problem(s)
on which it is based. This allows us to know exactly how
much security is maintained by the reduction and thus to
determine the strength of the reduction.
In order to quantify the reductions, we de�ne the advan-

tage Advake(A) that a computationally bounded adversary
A will defeat the AKE security goal of a protcol. The ad-
vantage is twice the probability that A will defeat the AKE
security goal of the protcol minus one1.
In order to quantify the reduction, we also consider the

probability Succma(A) that a computationally bounded ad-
versary A will defeat the MA security goal of a protocol2.

3.2 The Ideal Hash Model
In the ideal hash model, also called the \random oracle

model" [7], the cryptographic hash functions (like SHA or
MD5) are viewed as random functions with the appropri-
ate range. Security proofs in this model identify the hash
functions as oracles which produce a truly random value for
each new query and identical answers if the same query is
asked twice. Later, in practice, the random functions are
instantiated using speci�c functions derived from standard
cryptographic hash functions like SHA or MD5.
Analysis in this idealized model has been quite successful

in ensuring security guarantees of numerous cryptographic
schemes provided that the hash function has no weakness.
Security proofs in this model are superior to those provided
by ad hoc protocol designs although they do not, of course,
provide the same security guarantees as those in the stan-
dard model.

3.3 The Group Diffie-Hellman Problems
The Group Di�e-Hellman schemes have traditionally been

designed based on di�erent intractability assumptions. The
schemes of [13, 18] are based on heuristic assumptions that
are not known to be reducible to a well-known \hard" prob-
lem. The schemes of [20, 22, 27] are based on assumptions
that are reducible to a well-known \hard" problem.
In a cyclic prime-order group hgi, the \standard" assump-

tions that have been used so far are:

1. The Decisional Di�e-Hellman(DDH) assumption. Un-
der this assumption, distinguishing gab from a random
value when given ga and gb is computationally hard.

2. The Group Decisional Di�e-Hellman (G-DDH) assum-

ption. One considers the elements g
Q
xi for some sub-

sets of indices i (either all these subsets, except f1; : : : ,

1To defeat AKE security means for A distinguishing the
session key from a random value. Hence, A can trivially
defeat AKE with probability 1/2, multiplying by two and
substracting one rescales the probability.
2To defeat the MA security for A means impersonating a
player.
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ng, or only a part of them) and tries to distinguish
gx1:::xn from a random value.

In the ideal hash function model, one usually uses the CDH
and G-CDH assumptions:

1. The Computational Di�e-Hellman(CDH) assumption.
This assumption claims that given two elements ga; gb

, it is computationally hard to compute gab.

2. The Group Computational Di�e-Hellman (G-CDH)
assumption. In the G-CDH problem, one considers the
elements g

Q
xi for some subsets of indices i (either all

these subsets, except f1; ::; ng, or only a part of them)
and tries to compute gx1:::xn . G-CDH is believed to
be a \hard" problem.

The G-DDH problem appears to have �rst surfaced in the
cryptographic literature in the paper of Steiner et al. [31]
which also proves that the DDH assumption implies the G-
DDH assumption. Since then, the G-DDH has been used in
several other cryptographic settings [12, 25].
The G-CDH assumption is a potentially weaker intractabi-

lity assumption than G-DDH. It is also believed that the
CDH assumption implies the G-CDH assumption but it has
not yet been proved. The G-CDH has however, when con-
sidered modulo a composite number, been related to factor-
ing [9].

4. MODEL
In our model, the adversary A, which is not a player in

our formalization, is given enormous capabilities. It controls
all communications between player instances and can at any
time ask an instance to release a session key or a long-lived
key. In the rest of this section we formalize the protocol and
the adversary's capabilities.

4.1 Protocol Participants
We �x a nonempty set ID of n players that want (and are

supposed) to participate in a group Di�e-Hellman protocol
P . The number n of players is polynomial in the security
parameter k.
A player Ui 2 ID can have many instances called oracles,

involved in distinct concurrent executions of P . We denote
instance s of player Ui as �

s
i with s 2 N. Also, when we

mean a not �xed member of ID we use U without any index
and so denote an instance of U as �s

U with s 2 N.

4.2 Long-Lived Keys
Each player U 2 ID holds a long-lived key LLU which is

either a pair of matching public/private keys or a symmetric
key. LLU is speci�c to U not to one of its instances. As-
sociated to protocol P is a LL-key generator GLL which at
initialization generates LLU and assigns it to U .

4.3 Session IDS
We de�ne the session IDS (SIDS) for oracle �s

i in an exe-
cution of protocol P as SIDS(�s

i ) = fSIDij : j 2 IDg where
SIDij is the concatenation of all ows that oracle Pisi ex-
changes with oracle �t

j (possibly by the intermediate of A)
in an execution of P . We emphasize that SIDS is public {
it does not depend on the session key { and, thus, is avail-
able to the adversary A; A can just listen on the wire and
construct it. We will use SIDs to properly de�ne partnering
through the notion of partners IDs (PIDs).

4.4 Accepting and Terminating
An oracle �s

U accepts when it has enough information to
compute a session key SK. At any time an oracle �s

U can
accept and it accepts at most once. As soon as oracle �s

U ac-
cepts, SK and SIDS are de�ned. Now once having accepted
�s
U has not yet terminated. �s

U may want to get con�rma-
tion that its partners have actually computed SK or that
its partners are really the ones it wants to share a session
key with. As soon as �s

U gets this con�rmation message, it
terminates { it will not send out any more messages.

4.5 Oracle Queries
The adversary A has an endless supply of oracles �s

U and
makes various queries to them. Each query models a capa-
bility of the adversary. The four queries and their responses
are listed below:

� Send(�s
U ;m): This query models adversary A send-

ing messages to instances of players. The adversary
A gets back from his query the response which oracle
�s
U would have generated in processing message m. If

oracle �s
U has not yet terminated and the execution

of protocol P leads to accepting, variables SIDS are
updated. A query of the form Send(�s

U , \start") ini-
tiates an execution of P .

� Reveal(�s
U): This query models the attacks resulting

in the session key being revealed. The Reveal query
is only available to adversary A if oracle �s

U has ac-
cepted. The Reveal-query unconditionally forces �s

U to
release SK which otherwise is hidden to the adversary.

� Corrupt(U): This query models the attacks resulting
in the player U 's LL-key been revealed. Adversary A
gets back LLU but does not get the internal data of
any instances of U executing P .

� Test(�s
U): This query models the semantic security of

the session key SK, namely the following game, de-
noted by Gameake(A; P ), between adversary A and
the oracles �s

U involved in the executions of P . Dur-
ing the game, A can ask any of the above queries, and
once, asks a Test-query. Then, one ips a coin b and
returns SK if b = 1 or a random string if b = 0. At the
end of the game, adversary A outputs a bit b0 and wins

the game if b = b0. The Test-query is asked only once
and is only available if �s

U is Fresh (see section 5).

4.6 Executing the Protocol in the Presence of
an Adversary

Choose a protocol P with a session-key space SK, and
an adversary A. The security de�nitions take place in the
context of making A play the above game Gameake(A; P ).
P determines how �s

U behaves in response to messages from
the environment. A sends these messages: it controls all
communications between instances; it can at any time force
an oracle �s

U to divulge SK or more seriously LLU ; it can
initiate simultaneous executions of P . This game is initial-
ized by providing coin tosses to GLL, A, all �

s
U , and running

GLL(1
k) to set LLU . Then

1. Initialize any �s
U to SIDS  null, PIDS  null,

SK null.

2. Initialize adversary A with 1k and access to any �s
U ,
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3. Run adversary A and answer oracle queries as de�ned
above.

4.7 Discussion
The group Di�e-Hellman-like protocols [2, 3, 13, 18, 20,

27, 31] are generally speci�ed using the broadcast commu-
nication primitive; the broadcast primitive allows a player
to send messages to an arbitrary pool of players in a single
round. However such a communication convention is irrele-
vant to our notions of security; for example, one can always
turn a broadcast-based protocol P into a protocol P 0 which
sends only one message in each round and which still meets
our de�nitions of security as long as P does.
The group Di�e-Hellman-like protocols also employ a dif-

ferent connectivity graph (e.g, ring or tree) to route mes-
sages among players. The connectivity graph allows the pro-
tocols to meet speci�c performance attributes. However the
way the messages are routed among players does not impact
our security de�nitions; one can always turn a protocol P
into a protocol P 0 that di�ers only in its message routing.

5. DEFINITIONS OF SECURITY
In this section we present the de�nitions that should be

satis�ed by a group Di�e-Hellman scheme and what break-
ing a group Di�e-Hellman scheme means. We uniquely de-
�ne the partnering from the session IDS and, thus, it is
publicly available to the adversary3. We present each def-
inition in a systematic way: we give an intuition and then
formalize it.
Recall that forward-secrecy entails that loss of a LL-key

does not compromise the semantic security of previously-
distributed session keys. For the purpose of this paper, we
only consider a weak corruption model, in which the adver-
sary obtains only the long-lived key and not any internal

data (i.e. random bits used by a process). Let's also recall
that a function �(k) is negligible if for every c > 0 there exists
a kc > 0 such that for all k > kc, �(k) < k�c.

5.1 Partnering using SIDS
The partnering de�nition captures the intuitive notion

that the players with which oracle �s
i has exchanged mes-

sages are the players with which �s
i believes it has estab-

lished a session key. Another simple way to understand the
notion of partnering is that an instance t of a player Uj is a
partner of oracle �s

i if �t
j and �s

i have directly exchanged
messages or there exists some sequence of oracles that have
directly exchanged messages from �t

j to �
s
i .

After many executions of P , or in Gameake(A; P ), we
say that oracles �s

i and �t
j are directly partnered if both

oracles accept and SIDS(�s
i ) \ SIDS(�t

j) 6= ; holds. We
denote the direct partnering as �s

i $ �t
j .

We also say that oracles �s
i and �

t
j are partnered if both

oracles accept and if, in the graph GSIDS = (V; E) where
V = f�s

U : U 2 ID; i = 1; : : : ; ng and E = f(�s
i ;�

t
j) :

�s
i $ �t

jg the following holds:

9k > 1;� �s1
1
;�s2

2
; : : : ;�

sk
k �

3In the de�nition of partnering, we do not require that the
session key SK computed by partnered oracles be the same
since it can easily be proven that the probability that part-
nered oracles come up with di�erent SK is negligible (see
Section 7.4.1.

with :

�s1
1

= �s
i ; �

sk
k = �t

j ; �
si�1
i�1 $ �

si
i :

We denote this partnering as �s
i! �t

j .
We complete in polynomial time (in jV j) the graph GSIDS

to obtain the graph of partnering : GPIDS = (V 0; E0), where
V 0 = V and E0 = f(�s

i ;�
t
j) : �s

i ! �t
jg (see [15] for graph

algorithms), and then de�ne the partner IDS for oracle �s
i

as:

PIDS(�s
i ) = f�

t
j : �s

i! �t
jg

Although the above de�nitions may appear quite arti�-
cial, we emphasize that the authentication goals need to
be de�ned from essentially public criteria (in other words,
from the partnering notion). Claiming \players are mutu-
ally authenticated i� they hold the same SK" would lead to
unpractical de�nitions. The mutual authentication is essen-
tialy a public, veri�able notion.

5.2 Freshness
The freshness de�nition captures the intuitive notion that

a session key SK is de�ned Fresh if no oracle is corrupted
at that moment, and it remains Fresh if no Reveal-query
is asked later to the oracle or one of its partners. More
precisely, an oracle �s

U is Fresh (or holds a Fresh SK) if
the following four conditions hold: First, �s

U has accepted.
Second, nobody has been asked for a Corrupt-query before
�s
U accepts. Third, �s

U has not been asked for a Reveal-
query. Fourth, the partners of �s

U , PIDS(�
s
U) have not been

asked for a Reveal-query.

5.3 AKE Security
In an execution of P , we say an adversary A (compu-

tationally bounded) wins if she asks a single Test-query to
a Fresh oracle and correctly guesses the bit b used in the
game Gameake(A; P ). We denote the ake advantage as
AdvakeP (A); the advantage is taken over all bit tosses. Pro-
tocol P is an A-secure AKE if AdvakeP (A) is negligible.

5.4 Authentication Security
This de�nition of authentication captures the intuitive no-

tion that it should be hard for a computationally bounded
adversary A to impersonate a player U through one of its
instances �s

U .
In an execution of P , we say adversary A violates player-

to-players authentication (PPsA) for oracle �s
U if �s

U ter-
minates holding SIDS(�s

U), PIDS(�
s
U) and jPIDS(�

s
U)j 6=

n � 1. We denote the ppsa probability as Succ
ppsa
P (A)

and say protocol P is an A-secure PPsA if SuccppsaP (A) is
negligible.
In an execution of P , we say adversary A violates mutual

authentication (MA) if A violates PPsA authentication for
at least one oracle �s

U . We name the probability of such an
event the ma success Succma

P (A) and say protocol P is an
A-secure MA if Succma

P (A) is negligible.
Therefore to deal with mutual authentication (or player-

to-players authentication in a similar way), we consider a
new game Gamema(A; P ) in which the adversary exactly
plays the same way as in the game Gameake(A; P ) with
the same oracle accesses but with a di�erent goal: to violate
the mutual authentication. In this new game, the adversary
is not really interested in the Test-query, in the sense that
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it can terminate whenever he wants. However, we leave this
query available for simplicity.

5.5 Secure Signature Schemes
A signature scheme is de�ned by the following [28]:

� Key generation algorithm G. On input 1k with security
parameter k, the algorithm G produces a pair (Kp; Ks)
of matching public and secret keys. Algorithm G is
probabilistic.

� Signing algorithm �. Given a messagem and (Kp; Ks),
� produces a signature �. Algorithm � might be prob-
abilistic.

� Veri�cation algorithm V . Given a signature �, a mes-
sage m and Kp, V tests whether � is a valid signature
of m with respect to Ks. In general, algorithm V is
not probabilistic.

The signature scheme is (t; �)-CMA-secure if there is
no adversary A which can get a probability greater than
� in mounting an existential forgery under an adaptively
chosen-message attack (CMA) within time t. We denote
this probability � as Succcma

� (A).

5.6 Decisional and Computational Diffie-Hell-
man Assumptions

Let G = hgi be a cyclic group of prime order p and x1; x2; r
chosen at random in Zp. A (T; �)-DDH-distinguisher for G
is a probabilistic Turing machine � running in time T that
given any triplet (gx1 ; gx2 ; gr) outputs \True" or \False"
such that:���Pr[�(gx1 ; gx2 ; gx1x2) = \True"] �

Pr[�(gx1 ; gx2 ; gr) = \True"]
��� � �

We denote this di�erence of probabilities as AdvddhG (�). The
DDH problem is (T; �)-intractable if there is no (T; �)-
DDH-distinguisher for G .
A (T; �)-CDH-attacker for G is a probabilistic Turing ma-

chine � running in time T that given (gx1 ; gx2), outputs
gx1x2 with probability at least � = SucccdhG (�). The CDH
problem is (T; �)-intractable if there is no (T; �)-attacker
for G .

5.7 Group Computational Diffie-Hellman As-
sumption (G-CDH)

Let G = hgi be a cyclic group of prime order p and n be a
polynomially-bounded integer. Let In be f1; : : : ; ng, P(In)
be the set of all subsets of In and � be a subset of P(In)
such that In =2 �.
We de�ne the Group Di�e-Hellman distribution relative

to � as:

G-CDH� =
n [
J2�

(J; g
Q
j2J xj ) j (x1; : : : ; xn) 2R Z

n
p

o

If � = P(I)nfIng, we say that G-CDH� is the Full Gener-
alized Di�e-Hellman distribution [12, 25, 31].
Given �, a (T; �) G-CDH�-attacker for G is a probabilistic

Turing machine � running in time T that given G-CDH�

outputs gx1���xn with probability at least �. We denote this
probability by Succ

gcdh

G
(�). The G-CDH� problem is (T; �)-

intractable if there is no (T; �)-G-CDH�-attacker for G .

In the same way, we can de�ne a G-DDH� distinguisher
as a probabilistic Turing machine that given G-CDH� and
either gx1���xn or a random value, can distinguish the two
situations with non-negligible probability.

5.8 Adversary’s Resources.
The security is formulated as a function of the amount of

resources the adversary A expends. The resources are:

� t time of computing;

� qse; qre; qco number of Send, Reveal and Corrupt queries
adversary A respectively makes.

By notation Adv(t; : : : ) or Succ(t; : : : ), we mean the max-
imum values of Adv(A) or Succ(A) respectively, over all ad-
versaries A that expend at most the speci�ed amount of
resources.

6. A SECURE AUTHENTICATED GROUP
DIFFIE-HELLMAN SCHEME

We �rst introduce the protocol AKE1 and then prove it
is a secure AKE scheme in the ideal hash model. Then at
the end of this section we comment on the security theorem
and the proof.

6.1 Preliminaries
In the following we assume the ideal hash function model.

We use a hash function H from f0; 1g� to f0; 1g` where ` is a
security parameter. The session-key space SK associated to
this protocol is f0; 1g` equipped with a uniform distribution.
In this model, a new query, namely Hash-query is available
to adversary A; the adversary can submit an arbitraly long
bit string and obtain the value of H(m).
Arithmetic is in a �nite cyclic group G =< g > of order a

k-bit prime number q. This group could be a prime subgroup
of Z�p, or it could be an (hyper)-elliptic curve group. We
denote the operation multiplicatively.

6.2 Description of AKE1
This is a protocol in which the players ID = fUi : 1 � i �

ng are arranged in a ring, the name of the players are in the
protocol ows, the ows are signed using the long-lived key
LLU , the session key SK is sk = H(ID; F ln; g

x1:::xn), where
F ln is the downow; SIDS and PIDS are appropriately de-
�ned.
As illustrated by the example on Figure 1, the protocol

consists of two stages: up-ow and down-ow. In the up-
ow the player raises the received intermediate values to
the power of its private input and forwards the result to the
next player in the ring. The down-ow takes place when
Un receives the last up-ow and computes sk. Un raises
the intermediate values it has received to the power of its
private key and broadcasts the result (i.e. F ln) which allows
the other players to construct sk, granted their private data.

6.3 Security Theorem
Let P be the AKE1 protocol, GLL be the associated LL-

key generator. One can state the following security result:

Theorem 1. Let A be an adversary against the AKE se-

curity of protocol P within a time bound t, after qse inter-

actions with the parties and qh hash queries. Then we have:

AdvakeP (t; qse; qh) �

2qhq
n
se � Succ

gcdh�
G

(t0) + n � Succcma
� (t00)
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U 1 U 2 U 3 U 4

x1
R
 [0; p� 1]

X1 := fg; g
x1g

F l1 := fID;X1g

[F l1]U1
��������������!

[F l2]U2
��������������!

[F l3]U3
��������������!

V (F l1)
?
= 1 V (F l2)

?
= 1 V (F l3)

?
= 1

x2
R
 [0; p� 1] x3

R
 [0; p� 1] x4

R
 [0; p� 1]

X2 := fg
x1 ; gx2 ; gx1x2g X3 := fg

x1x2 ; gx1x3 ; X4 := fgx1x2x4 ; gx1x3x4 ;
gx2x3 ; gx1x2x3g gx2x3x4 ; gx1x2x3g

F l2 := fID;X2g F l3 := fID;X3g F l4 := fID;X4g
K := (gx1x2x3)x4

[F l4]U4
 ��������������

[F l4]U4
 �������������� ����� ������

[F l4]U4
 �������������� ����� ������ ����� ������

V (F l4)
?
= 1 V (F l4)

?
= 1 V (F l4)

?
= 1

K := (gx2x3x4)x1 K := (gx1x3x4)x2 K := (gx1x2x4)x3

Figure 1: Protocol AKE1. An example of a honest execution with 4 players: ID = fU1; U2; U3; U4g. The shared
session key SK is sk = H(U1; U2; U3; U4; F l4; g

x1x2x3x4 ).

where t0 � t+qsenTexp(k) and t
00 � t+qsenTexp(k); Texp(k)

is the time of computation required for an exponentiation

modulo a k-bit number and � corresponds to the elements

adversary A can possibly view:

� =
[

1�j�n

ffi j 1 � i � j; i 6= lg j 1 � l � jg

Before describing the details of the proof let us �rst pro-
vide the main ideas. We consider an adversary A attacking
the protocol P and then \breaking" the AKE security. A
would have carried out her attack in di�erent ways: (1) she
may have got her advantage by changing the content of the
ows, hence forging a signature with respect to some player's
long-lived public key (otherwise, the player would have re-
jected). We will then use A to build a forger by \guessing"
for which player A will produce her forgery. (2) she may
have broken the scheme without altering the content of the
ows. We will use it to solve an instance of the G-CDH
problem, by \guessing" the moment at which A will make
the Test-query and by injecting into the game the elements
from the G-CDH instance received as input.

6.4 Security Proof

Proof. Let A be an adversary that can get an advantage
� in breaking the AKE security of protocol P within time
t. We construct from it a (t00; �00)-forger F and a (t0; �0)-G-
CDH�-attacker � .

6.4.1 ForgerF.
Let's assume that A breaks the protocol P because she

forges a signature with respect to some player's (public) LL-
key and she is able to do it with probability greater than �.
We construct from it a (t00; �00)-forger F which outputs a
forgery (�;m) with respect to a given (public) LL-key Kp

(Of course Kp was produced by GLL(1
k)).

F receives as input Kp and access to a (public) signing
oracle. F provides coin tosses to GLL, A and all �s

U . F picks
at random i 2 [1; n] and runs GLL(1

k) to set the players' LL-
keys. However for player i, F sets LLi to Kp. F then starts
running A as a subroutine and answers the oracle queries
made by A as explained below. F also uses a variable K,
initially set to ;.
When A makes a Send-query, F answers in a straight-

forward way, using LL-keys to sign the ows, except if the
query is of the form Send(�s

i ; �) (8s 2 N). In this latter case
the answer goes through the signing oracle, and F stores in
K the request to the signing oracle and the signing oracle
response. When A makes a Reveal-query or a Test-query,
F answers in a straightforward way. When A makes a Cor-

rupt-query, F answers in a straightforward way except if the
query is of the form Corrupt(�s

i ) (8s 2 N). In this latter
case, since F does not know the LL-key Ks for player i, F
stops and outputs \Fail". But anyway, no signature forgery
occurred before, and so, such an execution can be used with
the other reduction. When A makes a Hash-query, F an-
swers the query as depicted on Figure 2.
If A has made a query of the form Send(�; (�;m)) where �

is a valid signature on m with respect to Kp and (�;m) =2 K,
then F halts and outputs (�;m) as a forgery. Otherwise the
process stops when A terminates and F outputs \Fail".
The probability that F outputs a forgery is the probabil-

ity that A produces a valid ow by itself multiplied to the
probability to \correctly guess" the value of i:

Succ
cma
� (F) �

�

n

The runnning time of F is the running time of A added
to the time to process the Send-queries. This is essentially
a constant value. This gives the formula for t:

t00 � t+ qsenTexp(k)

6.4.2 G-CDH�-attacker�.
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Let's assume that A gets its advantage without producing
a forgery. (Here with probability greater than � the valid
ows signed with LLU come from oracle U before U gets
corrupted and not from A.) We construct from A a (t0; �0)-
G-CDH�-attacker � which receives as input an instance of
G-CDH� and outputs the group Di�e-Hellman secret value
relative to this instance.
� receives as input an instance D = ((f1g; gx1); (f2g; gx2);

: : : ; F ln) of the G-CDH� problem, where F ln are the terms
corresponding to subsets of indices of cardinality n�1 (with
the same structure as in the broadcast). � provides coin
tosses to GLL, A, all �

s
U , and runs GLL(1

k) to set the play-
ers' LL-keys. � picks at random n values u1 through un
in [1; qse]

n. Then � starts running A as a subroutine and
answers the oracle queries made by A as explained below.
� uses a set of counters ci through cn, initially set to zero.
When A makes a Send-query to some instance of player

Ui, then � increments ci and proceeds as in protocol P
using a random value. However if ci = ui and m is the
ow corresponding to the instance D, � answers using the
elements from the instance D. When A makes a Corrupt-
query, � answers in a straightforward way. When A makes
a Hash-query, F answers the query as depicted on Figure 2.
WhenAmakes a Reveal-query, � answers in straightforward
way. However, if the session key has to be constructed from
the instance D, � halts and outputs \Fail". WhenA makes
the Test-query, � answers with a random string.
We emphasize that, since � knows all the keys except for

one execution of P (i.e. the execution involving D in all
ows), this simulation is perfectly indistinguishable from an
execution of the real protocol P .
The probability that � correctly \guesses" on which ses-

sion key A will make the Test-query is the probability that
� correctly \guesses" the values u1 through un. That is:

� =
Y
n

1

qse
=

1

qnse

In this case, � is actually able to answer to all Reveal-
queries, since Reveal-query must be asked to a Fresh ora-
cle, holding a key di�erent from the Test-ed one, and thus,
known to �.
Then, when A terminates outputting a bit b0, � looks in

theH-list to see if some queries of the form Hash(U1; : : : ; Un;
F ln; �) have been asked. If so, � chooses at random one of
them, halts and outputs the remaining part \�" of the query.
Let Ask be the event thatAmakes a Hash-query on (U1; :::;

Un; F ln; g
x1���xn). The advantage of A in breaking the AKE

security without forging a signature, conditioned by the fact
that we correctly guessed all ui's, is:

�� �

qnse
� Adv

ake
P (A) = 2Pr[b = b0]� 1

= 2Pr[b = b0j:Ask] Pr[:Ask] +

2Pr[b = b0jAsk] Pr[Ask] � 1

� 2 Pr[b = b0j:Ask]� 1 + 2Pr[Ask] = 2Pr[Ask]

In the random oracle model, 2 Pr[b = b0j:Ask] � 1 = 0,
since A can not gain any advantage on a random value with-
out asking for it.
The success probability of � is the probability that A asks

the correct value to the hash oracle multiplied by the prob-
ability that � correctly chooses among the possible Hash-

queries:

Succ
gcdh�
G

(�) �
Pr[Ask]

qh
�

�� �

2qnse
�

1

qh

The runnning time of � is the running time of A added
to the time to process the Send-queries. This is essentially n
modular exponentiation computation per Send-query. Then

t0 � t+ qsenTexp(k)

Hash function H

query m
�������������! If m 62 H-list, then r

R
 2 f0; 1g`,

and H-list H-listk(m; r).
H(m)

 ������������� Otherwise, r is taken from H-list.

H-list
List Members Meaning

H-list (m; r) H(m) = r;
Hash query has been made on m

Figure 2: Hash-oracle simulation.

6.5 Result Analysis
The quality of the reduction measures how much secu-

rity of the G-CDH and the signature scheme is injected into
AKE1. We view qse as an upper bound on the number of
queries we are willing to allow (e.g., qse = 230 and qh = 260)
and n as the number of participants involved in the execu-
tion of AKE1 (e.g., current scienti�c collaborations involve
up to 20 participants). Moreover, because of the network
latency and computation cost, the practicability of AKE1
becomes an issue with groups larger than 40 members oper-
ating in a wide-area environment [1].
We may then ask how the security proof is meaningful

in practice. First, one has to be clear that such a proof of
security is much better than no proof at all and that AKE1
is the �rst AKE scheme to have a proof of security. Second,
several techniques can be used to carry out a proof which
achieves a better (or tighter) security reduction.
In e�ect the reduction can be improved using a technique

of Shoup [29]. Shoup's technique runs two attackers, similar
to the one above, in parallel on two di�erent instances ob-
tained by random self-reducibility [25], and a common value
will appear in the H-list of the attackers with overwhelming
probability and thus leads to the right solution for G-CDH.
The reduction can also be improved if the security of

AKE1 is based on the G-DDH assumption. The idea is
to use a technique similar to the one used by Coron [16] and
to use the random self-reducibility of G-DDH� to generate
many instances D0 from D such that all the D0 lie in the
same distribution as D, either G-DDH� or R�. Such in-
stances are randomly used. But then, the resulting session
key will be unknown. Therefore, the reduction will work
if all the Reveal-queries are asked for known session keys,
but the Test-query is asked to one involving an instance D0.
By correctly tuning the probability of using a D0 instance
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or not, one can slightly improve the e�ciency of the reduc-
tion4. Moreover, if the session key is simply �xed as gx1���xn

the proof can be carried out in the standard model.

7. ADDING AUTHENTICATION
In this section we sketch generic transformations for turn-

ing an AKE protocol P into a protocol P 0 that provides
player-to-players authentication (PPsA) and mutual authen-
tication (MA). Then, we prove in the ideal hash model that
the transformation provides a secure MA scheme and com-
ment on the security theorem.
It may be argued that PPsA and MA are not absolutely

necessary, can be achieved by a variety of means (e.g, en-
cryption could begin on some carefully chosen known data)
or even that MA does give real security guarantees in prac-
tice. However, the task of a cryptographic protocol designer
is to make no assumptions about how system designers will
use the session key and provide application developers with
protocols requiring only a minimal degree of cryptographic
awarness.

7.1 Approach
The well-known approach uses the shared session key to

construct a simple \authenticator" for the other parties.
However, one has to be careful in the details and this is
a common \error" in the design of authentication protocols.
Actually the protocols o�ered by Ateniese et al. [2] are seen
insecure under our de�nitions since the \authenticator" is
computed as the hash of the session key sk and sk is the
same as the �nal session key SK. The adversary learns some
information about the session key sk { the hash of sk { and
can use it to distinguish SK from a session key selected at
random from session-key space SK. Therefore these proto-
cols sacri�ce the security goal that a protocol establishes a
semantically secure session key.

7.2 Description of the Transformations
The transformation AddPPsA (adding player-to-players

authentication) for player U consists of adding to protocol
P one more round in such a way that the partners of U are
convinced they share sk with U . As an example, on �gure 3
player Un sends out H(sk; n).
More formally the transformation AddPPsA works as fol-

lows. Suppose that in protocol P player Un has accepted
holding skUn ; sidUn ; pidUn and has terminated. In proto-
col P 0 = AddPPs(P ), Un sends out one additional ow
authUn = H(skUn ; n), accepts holding sk0Un = H(skUn ; 0),
sid0Un = sidUn , pid

0
Un

= pidUn , and then terminates. Sup-
pose now that in P the partner Ui (i 6= n) of Un has ac-
cepted holding skUi ; sidUi ; pidUi and has terminated. In
protocol P 0, Ui receives one additional ow authUn and
checks if authUn = H(skUi ; n). If so, then Ui accepts hold-
ing sk0Ui = H(skUi ; 0); sid

0
Ui

= sidUi ; pid
0
Ui

= pidUi , and
then terminates. Otherwise, Ui rejects.
The transformation AddMA (add mutual authentication)

is analogous to AddPPsA. It consists of adding to protocol P
one more round of simultaneous broadcasts. More precisely,
all the players Ui send out H(sk; i) and they all check the
received values.

4However, such a proof gets complicated when one adds
in the concern of forward-secrecy. Instead the ideas in the
proof of Section 6.4 can easily be extended to show that
AKE1 guarantees forward-secrecy.

7.3 Security Theorem
Let P be an AKE protocol, SK be the session-key space

and G be the associated LL-key generator. One can state
the following security result about P 0=AddMA(P ):

Theorem 2. Let A be an adversary against the security

of protocol P 0 within a time bound t, after qse interactions

with the parties and qh hash queries. Then we have:

AdvakeP 0 (t; qse; qh) � AdvakeP (t; qse; qh) +
qh
2`

Succma
P 0 (t; qse; qh) � AdvakeP (t0; qse; qh) +

nqh
2`

where t0 � t+ (qse + qh)O(1).

Before describing the details of the proof let us �rst pro-
vide the main ideas. We �rst show that the transformation
AddMA preserves the AKE security (session key indistin-
guishability) of protocol P . We then show that imperson-
ating a player in MA rounds implies for A to \fake" the
authentication value Authi. Since this value goes through
the hash function, it implies that A has computed the ses-
sion key value sk and, thus, made the Hash-query.

7.4 Security Proof

Proof. Let A be an adversary that can get an advantage
AdvakeP 0 (t; qse; qh) in breaking the AKE security of protocol
P 0=AddMA(P ) within time t or can succeed with proba-
bility Succma

P 0 (t; qse; qh) in breaking the MA security of pro-
tocol P 0. We construct from it an attacker B that gets an
advantage AdvakeP (t0; qse; qh) in breaking the AKE security
of protocol P within time t0.

7.4.1 Disrupt Partnering
We are not concerned with partnered oracles coming up

with di�erent session keys, since our de�nition of partnering
implies the oracles have exchanged exactly the same ows.
We also note that the probability that two instances of a

given player come to be partnered is negligible; in fact, it
would mean they have chosen the same random value in the

protocols, which occurs with probability O(
q2se
2k

).

7.4.2 AKE break
We construct from A an adversary B that gets an advan-

tage �0 in breaking the AKE security of P within time t0.
B provides coin tosses to GLL, A, all �

s
U and starts run-

ning the game Gameake(A; P 0). B answers the queries
made by A as follow.
The oracle queries made by A to B are relayed by B and

the answers are subsequently returned to A. However B's
answers to Reveal and Test-queries go through the Hash-
oracle to be padded with \0" before being returned to A.
The Hash-queries are answered as usual Figure 2.
In the ideal hash model, in which H is seen as a ran-

dom function, A can not get any advantage in correctly
guessing the bit involved in the Test-query without having
made a query of the form H(sk; 0). So Pr[A asks (sk; 0)] �
AdvakeP (A) � �.
At some point A makes a Test-query to oracle �s

U , B gets
value � and relays H(�; 0) to A. B then looks for � in the
H-list: B outputs 1 if (�; 0) is in the H-list of queries made
by A, otherwise B ips a coin and outputs the coin value.
The advantage of B to win Gameake(B; P ) is the proba-

bility that A made of query of the form H(sk; 0) minus the

8



U i U n

Protocol P which outputs
SIDS= sids, PIDS= pids, and

comes up with SK= skUi comes up with SK= skUn
authUn  H(skUn ; n)
sk0

Un
 H(skUn ; 0)

authUn
 ��������������

AuthUn
?
= H(skUi ; n)

sk0
Ui
 H(skUi ; 0)

Figure 3: Transformation P 0 = AddPPsA(P ). The shared session key SK is sk0 = H(sk; 0), SIDS and PIDS
are unchanged.

probability that A made such query by \pure chance":

Adv
ake
P (B) = Pr [A asks (sk; 0)]�

qh
2`
� Adv

ake
P 0 (A)�

qh
2`

The runnning time of B is the running time of A added
to the time to process the Send-queries and Hash-queries:

t0 � t+ (qse + qh)O(1)

7.4.3 MA break
We construct fromA an adversary B which gets advantage

�0 in breaking the AKE security of P within time t0.
B provides coin tosses to GLL, A, all �s

U , and starts
running the game Gamema(A; P 0). B answers the oracle
queries made by A as follows.
The oracle queries made by A to B are relayed by B and

the answers are subsequently returned to A. However B's
answers to Reveal and Test-queries go through the Hash-
oracle to be padded with \0" before being returned to A.
The Hash-queries are answered as usual Figure 2.
In the ideal hash model, in which H is seen as a random

function, A can not get any advantage in impersonating
some oracle �si

i without having made a query of the form
H(sk; i).
At some point B makes a Test-query to oracle �s

U and gets
value � . Later A terminates and B looks for � in H-list: B
outputs 1 if (�; �) is in H-list, otherwise B ips a coin and
outputs the coin value. (�; i) is in H-list if A violates PPsA
for oracle �si

i except with probability qh � n �
1

2`
.

The advantage of B to win Gameake(B; P ) is the proba-
bility that A makes a query of the form H(sk; i):

Adv
ake
P (B) = Pr [A asks (sk; i)] � ��

nqh
2`

The runnning time of B is the running time of A added
to the time to process the Send-queries and Hash-queries:

t0 � t+ (qse + qh)O(1)

7.5 Result Analysis
The quality of the reduction measures how much secu-

rity of the AKE security strength of protocol P is injected
into protocol P 0. We see that the reduction injects much
of the security strength of protocol P into P 0. In e�ect

we can see it since AdvakeP 0 (t; qse; qh) (Succ
ma
P 0 (t; qse; qh) re-

spectively) is inside an additive factor of AdvakeP (t; qse; qh)
(AdvakeP (t0; qse; qh) respectively) and this additive factor de-
creases exponentially with `.

8. CONCLUSION
In this paper we presented a model for the group Di�e-

Hellman key exchange problem derived from the model of
Bellare et al. [5]. Some speci�c features of our approach
that were introduced to deal with the Di�e-Hellman key
exchange in the multi-party setting are: de�ning the notion
of session IDS to be a set of session ID, de�ning the notion of
partnering to be a graph of partner ID. Addressed in detail
in this paper were two security goals of the group Di�e-
Hellman key exchange: the authenticated key exchange and
the mutual authentication. For each we presented a def-
inition, a protocol and a security proof in the ideal hash
model that the protocol meets its goals. This paper pro-
vided the �rst formal treatment of the authenticated group
Di�e-Hellman key exchange problem.
The model and de�nitions introduced in this paper may

seem limited at �rst sight. Our �nal goal is a model to
help manage the complexity of de�nitions and proofs in the
following broader scenario. A scenario in which the group
membership is dynamic rather than static: after the initial-
ization phase, and throughout the lifetime of the multicast
group, the parties would like to engage in a conversation af-
ter each change in the membership at the end of which the
session key, sk, is updated to sk0. The new session key is
known to nobody but the parties in the multicast group. We
are currently extending our model to encompass this larger
scenario.
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